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SUMMARY

Stabilization of the finite element method for flow problems at high Reynolds numbers is the main subject
of presented research. The semiGLS method is recalled as a modification of the Galerkin least-squares
method. The presented work extends our previous paper on this method by its other important aspects.
The main aim of this paper is to analyse and comment on the accuracy of the method. A posteriori error
estimates for incompressible Navier–Stokes equations are used as the main tool for error analysis and
some conclusions concerning accuracy are derived. Several numerical experiments are presented for both
benchmark and practical problems. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The goal of our study is to modify the established finite element method (FEM) for flows at higher
Reynolds numbers. We deal with a numerical solution of incompressible viscous flow. Owing to
problems with stability of the numerical method for solving flows at high Reynolds numbers, a
number of researchers are interested in improvement of the method. Stabilization techniques for
the FEM are commonly accepted tools for achieving better stability nowadays.
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In [1], the semiGLS method was introduced as a modification of the Galerkin least-squares
(GLS) method studied earlier by Hughes, Franca and their co-workers (e.g. [2–4], refer to [1] for
other references).

The presented paper focuses mainly on the aspect of accuracy of the semiGLS method. As has
been observed earlier, we pay for the better stability of the method by some loss of accuracy.

A straightforward way for evaluation of this loss was described in [1]. It is based on comparison
of discrete norms of approximate solutions obtained with and without stabilization.

The approach presented in this paper uses a posteriori error estimates for evaluation of the error
caused by the stabilization technique. We aim at finding the distribution of error for large Reynolds
numbers. For low-speed flows, we estimate the error and compare its distribution for both basic
and stabilized methods.

2. MODEL PROBLEM

Let � be an open-bounded domain in R2 filled with an incompressible viscous fluid, and let � be
its boundary. Isothermal steady (time-independent) flow of such fluid is governed by the following
Navier–Stokes system of partial differential equations (nonconservative form)

(u·∇)u−��u+∇ p= f in � (1)

∇ ·u=0 in � (2)

u=g on �g (3)

−�(∇u)n+ pn=0 on �h (4)

where u=(u1,u2)T denotes the vector of flow velocity; p denotes the pressure normalized by
the density; � denotes the kinematic viscosity of the fluid (supposed constant); f denotes the
density of volume forces per mass unit; �g and �h are two subsets of � satisfying �=�g∪�h ; n
denotes an outer normal vector to the boundary � with unit length; g is a given function satisfying∫
� g ·nd�=0 in the case of �=�g .

3. APPROXIMATION OF THE PROBLEM BY FEM

Using the framework of variational formulation of problem (1)–(4) and of mixed FEM, the following
discrete weak steady Navier–Stokes problem is derived [5]:

Find uh ∈Vgh and ph ∈Qh , satisfying∫
�
(uh ·∇)uh ·vh d�+�

∫
�

∇uh :∇vh d�−
∫

�
ph∇ ·vh d�=

∫
�
f ·vh d� ∀vh ∈Vh (5)

∫
�

�h∇ ·uh d�=0 ∀�h ∈Qh (6)

uh−ugh ∈Vh (7)
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where for the application of Taylor–Hood finite elements P2P1 and/or Q2Q1

Vgh = {vh =(vh1,vh2)
T∈[C(�)]2; vhi |TK ∈ R2(TK ), K =1, . . . ,N , i=1,2, vh =g

in nodes on �g}

Qh ={�h ∈C(�); �h |TK ∈ R1(TK ), K =1, . . . ,N }

Vh = {vh =(vh1,vh2)
T∈[C(�)]2; vhi |TK ∈ R2(TK ), K =1, . . . ,N , i=1,2, vh =0

in nodes on �g}
Here

Rm(TK )=
⎧⎨
⎩
Pm(TK ) if TK is a triangle

Qm(TK ) if TK is a quadrilateral

is an abbreviated notation for polynomial spaces of degree m on individual elements and C(�)

denotes the space of continuous functions on �.

4. semiGLS STABILIZED FORMULATION

We recall the semiGLS stabilization technique, which was derived in [1] as a modification of GLS
method, proposed by Hughes et al. [4]. Applying this stabilization to the momentum equation (5)
and adding the continuity equation (6), we introduce the stabilized problem:

Find uh ∈Vgh and ph ∈Qh satisfying

BsGLS(uh, ph;vh,�h)= LsGLS(vh,�h) ∀vh ∈Vh, ∀�h ∈Qh (8)

uh−ugh ∈Vh (9)

where

BsGLS(uh, ph;vh,�h) ≡
∫

�
(uh ·∇)uh ·vh d�

+�
∫

�
∇uh :∇vh d�−

∫
�
ph∇ ·vhd�+

∫
�

�h∇ ·uh d�

+
N∑

K=1

∫
TK

[(uh ·∇)uh−��uh+∇ ph]·�[(uh ·∇)vh−��vh+∇�h]d�

LsGLS(vh,�h)≡
∫

�
f ·vhd�+

N∑
K=1

∫
TK

f ·�[(uh ·∇)vh−��vh+∇�h]d�
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Here � is a positive stabilization parameter. Refer to [1] for a detailed description of its computation,
which is based on ideas from [3].

Although stabilization terms should vanish in the limit for h→0 (the exact solution) satisfying
the formal consistency, the approximate solution does not reach this limit. Hence, these terms
remain present in the practically solved equations and modify them slightly. We hypothesize that
this is the source of the loss of accuracy.

5. A POSTERIORI ERROR ESTIMATES

For evaluating the achieved accuracy of our solution, we use the following error estimator that
represents the relative error on element TK :

R2(u1h,u2h, ph,TK )= |�| E2(u1h,u2h, ph,TK )

|TK |‖(u1h,u2h, ph)‖2V,�

(10)

based on a posteriori error estimates in the following form derived for Taylor–Hood elements
in [6]

‖(eu1,eu2,ep)‖2V,TK �E2(u1h,u2h, ph,TK ) (11)

where (u1,u2, p) denotes an exact solution; (u1h,u2h, ph) denotes an approximate solution
computed by FEM; (eu1,eu2,ep)=(u1−u1h,u2−u2h, p− ph) denotes an error of approximate
solution; ‖u1h,u2h, ph‖2V,� =‖u1h,u2h‖21,�+‖ph‖20,�, where ‖u1h,u2h‖1,� means the Sobolev

H1(�) norm, ‖ph‖0,� means the L2(�) norm, |�|, |TK | mean the area of the domain � and the
element TK , respectively.

The term on the right-hand side of inequality (11) is evaluated as

E2(u1h,u2h, ph,TK )

=C

[
h2K

∫
TK

(r21 (u1h,u2h, ph)+r22 (u1h,u2h, ph))d�+
∫
TK

r23 (u1h,u2h, ph)d�

]

where

r1(u1h,u2h, ph)= fx1 −
(
u1h

�u1h
�x1

+u2h
�u1h
�x2

)
+�

(
�2u1h
�x21

+ �2u1h
�x22

)
− �ph

�x1

r2(u1h,u2h, ph)= fx2 −
(
u1h

�u2h
�x1

+u2h
�u2h
�x2

)
+�

(
�2u2h
�x21

+ �2u2h
�x22

)
− �ph

�x2

r3(u1h,u2h, ph)= �u1h
�x1

+ �u2h
�x2

stand for residuals of the system (1)–(2), hK =diam(TK ). The constant C is a delicate task in
a posteriori error estimates. We refer to [6], where we show its derivation for the case of non-
stabilized FEM. In this paper we use the constant in a relative sense: we apply the a posteriori
error estimates to show the relative error on finite elements, in order to show the distribution of the
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error in the solution domain. For the purpose of comparison of this distribution obtained without
stabilization and by semiGLS, it is important to use the same constant for both solutions.

6. NUMERICAL RESULTS

Comparison of a posteriori error estimates for the problem of the lid-driven cavity (see [1] for
details) at Reynolds number 10 000 is presented in Figure 1. In Figures 2–3, we can observe results
for a channel with an abrupt extension of diameter.
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Figure 1. A posteriori errors on elements, cavity problem, Re=10000, uniform mesh 64×64 without
stabilization (left) and by semiGLS method (right).
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Figure 2. Streamlines in a channel by the method without stabilization (left) and by
semiGLS method (right), Re=1000.
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Figure 3. A posteriori error estimates in the channel for the Newton method without stabilization (left)
and by the semiGLS method (right), Re=1000.
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Flow past NACA 0012 airfoil (Figures 4 and 5) is investigated as a more practical application.
The computational mesh for this problem was described in [1] with results of unsteady flow for
Reynolds numbers 1000 and 100 000. Some other results were presented in [7]. In this paper,
solution of the steady flow for Reynolds number 100 is presented and the error is analysed by
a posteriori error estimates.

In presented plots, AEE is an abbreviation for a posteriori error estimator from Equation (10).
Let us note that, as was already suggested at the end of Section 5, our error estimator does not yield
the exact value of the approximation error. Still it is satisfactory enough to detect elements where
the inaccuracy is higher compared with other elements, cf. Figures 1, 3 and 5. Also, though the
examples presented (Figures 1–3) are quite hard to compute numerically (singularities at corners,
e.g.), analysis of the results shows where to refine the mesh to improve accuracy.

To present such comparisons, Reynolds number for all these experiments was restricted to
values, for which we are able to obtain solution also by Galerkin method without stabilization.
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Figure 4. Streamlines (left) and pressure contours (right), Re=100.
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Figure 5. A posteriori error on elements for the Newton method without stabilization (left) and by the
semiGLS method (right), Re=100.
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It does not depreciate an important advantage of this evaluation—we are able to obtain an idea
about the error distribution for any Reynolds number, for which the stabilized method converges.

7. CONCLUSION

We have investigated the aspect of accuracy of the semiGLS stabilization technique for incom-
pressible Navier–Stokes equations, a modification of the GLS method introduced in [1]. The
method has been applied not only to benchmark problems but also to practical problems of external
aerodynamics, including problems at higher Reynolds numbers.

The loss of accuracy is inherited in the stabilized method and could be hardly suppressed. It
was shown in [1] that it can range from negligible effects to serious influence including qualitative
changes of flow such as forming vortex structures. It was also shown in the reference that these
effects are reduced with mesh refinement.

Using the new approach presented in this paper, we can evaluate the distribution of the error and
therefore obtain the idea about its effect. Moreover, we are able to refine the mesh adaptively in
the problematic areas and recompute the solution in the way that is commonly used in connection
with a posteriori error estimates if a uniform error distribution is desired. Such an approach was
presented in [6] for the FEM without stabilization.

In Figures 1, 3 and 5, we can observe that the error can spread to a larger area when using
semiGLS than for the standard FEM. Similar behaviour was observed also for other stabilization
techniques, such as stream line-upwind/Petrov–Galerkin method.

Although the a posteriori error estimates offer an important new insight into the distribution
of the error and its behaviour, still the problem of accuracy in the stabilized version of the FEM
needs deeper understanding and deserves further analysis.
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